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ABSTRACT 
Appropriate optimization of bioinformatics workflows is vital to 
improve the timely discovery of variants implicated in cancer 
genomics. Sequenced human brain tumor data was assembled to 
optimize tool implementations and run various components of 
RNA sequence (RNA-seq) workflows. The measurable 
information produced by these tools account for the success rate 
and overall efficiency of a standardized and simultaneous 
analysis. We used the National Center for Biotechnology 
Information) Sequence Read Archive (NCBI-SRA) database to 
retrieve two transcriptomic datasets containing over 104 million 
reads as input data. We used these datasets to benchmark various 
file systems on the Bridges supercomputer to improve overall 
workflow throughput. Based on program and job timings, we 
report critical recommendations on selections of appropriate file 
systems and node types to efficiently execute these workflows. 
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1 INTRODUCTION 
During the last half-decade, advances in Next Generation 
Sequencing (NGS) technologies have made it possible to rapidly 
sequence transcriptomes. With NGS, researchers can now 
generate massive amounts of experimental data inexpensively, 
most of which must be assembled and analyzed on high 
performance computers (HPC). The design and construction of 
efficient workflows to aid in the annotation, assembly, and 
analysis of NGS data is vital to improve both the analysis 
throughput and the cost-effectiveness of using HPC for research 
or clinical purposes.  
 
In this work, we analyze a common RNA-seq transcriptomic 
workflow (See Fig 1) on Phase-1 of Bridges [2], a newly installed 
$9.65M National Science Foundation (NSF) awarded 
supercomputing system at the Pittsburgh Supercomputing Center. 
 

 

  

 

 

 

 
  
  
Figure 1. This figure shows the steps and programs needed to 
execute a genome-guided assembly using Cufflinks [1]. This 
workflow follows protocol from http://cole-trapnell-
lab.github.io/cufflinks/manual/. 
 
The Phase 1 system consists of tiered, large-shared-memory 
resources with nodes having 12TB, 3TB, and 128GB each, 
dedicated nodes for database, web, and data transfer, high-
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performance shared and distributed data storage, Hadoop 
acceleration, powerful new CPUs and GPUs, and the first use of 
Intel’s OmniPath interconnection network in a computing system.  
 
Phase-1 Bridges (see Figure 2) supports four different file 
systems, two persistent storage systems (/pylon1 and /pylon2) and 
two volatile file systems ($LOCAL and $RAMDISK) on most 
node types. The /pylon1 file system is a parallel Luster file system 
[3] meant to be used as working space for running jobs [4] that is 
periodically wiped. In contrast, the /pylon2 file system is a 
persistent file system running Slash2 [5] that was developed for 
long-term storage of files. 

 
 
Figure 2. In this figure from 
https://www.psc.edu/index.php/bridges-virtual-tour, the 
implemented OmniPath interconnection and the different 
node types that comprise the Bridges supercomputer during 
Phase-1 are shown.  

The volatile file systems are used to hold temporary data 
generated from running jobs.  $LOCAL consists of physical disk 
drives attached to each Bridges node. Once a job finishes, the 
$LOCAL files are inaccessible. Because files must be written and 
read directly from the file system from within a running job, data 
must typically be copied to $LOCAL at the beginning of a job and 
back out before the job ends [4]. The maximum amount of local 
space varies by each node and the RSM (128GB) nodes have a 
maximum of 3.7TB.  

The second volatile file system, $RAMDISK, uses memory rather 
than physical disk which can potentially offer the fastest IO. It is 
comparable to $LOCAL, except the size available is determined 
by the physical size of the memory on the nodes reduced by the 
amount of memory needed by the running program(s). Like 
$LOCAL, the space is inaccessible once the job finishes and data 
that needs to be saved must be copied to the persistent file system 
before the job ends.  If a job terminates abnormally all memory 
files are lost [4]. 

2   EXPERIMENTAL AND COMPUTATIONAL  
     DETAILS 

2.1 Test Data 

To benchmark the workflow, two transcriptomic datasets of 
glioblastomas in human subjects were retrieved from the NCBI-
SRA database: SRR3477485 (3,792 MBases, “primary tumor”) 
and SRR3477486 (6,474 MBases, “recurrent tumor”). The 
FastQC [6]  (v.0.11.2) program was used to examine the quality of 
the datasets, and showed that quality improvements such as 
trimming  and/or filtering were not necessary.   

2.2 Benchmarking 

The programs implemented to benchmark the file systems 
included the aligners Bowtie1 (v.1.1.1) [7] and HISAT (v.2.0.4) 
[8], the mapper TopHat (v.2.2.1) [9], and the transcript assembler 
Cufflinks (v.2.2.1) [1]. 
 
The access patterns of the Bridges file systems are shown in 
Figure 3. Due to the volatility of the $RAMDISK and $LOCAL 
file systems, data was copied into these file systems from /pylon1 
and /pylon2 upon workflow startup. After the workflows were 
executed on these file systems, timings based on output to /pylon1 
and /pylon2 (individually) were collected. 
 

 
 
Figure 3. In this figure, we show how each file system was 
accessed to run all programs.  

3 RESULTS AND DISCUSSION 
Figures 4, 5, and 6 show timings for the file systems, using the 
two datasets.  
 
On the primary tumor run (Figure 4), $RAMDISK and $LOCAL 
all performed comparably. On the timings of $LOCAL, we saw 
small variations between runs. The /pylon2 file system was 
showing the highest variation (around 35%). Comparing the 
recurrent tumor runs, we saw small variability (around 20%) in 
the $LOCAL file systems. 
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Figure 4. Timings for mapping: Hisat. In this figure, we show 
the timings for the mapping program HISAT [8] where the 
recurrent tumor test case was run twice. 
 
The Bowtie [7] runs in Figure 5 took substantially longer than the 
comparable HISAT [8] run with the same dataset. Here, the 
performances of /pylon1, $LOCAL and $RAMDISK file systems 
were comparable. Again, large variations were observed on the 
/pylon2 file system. 

Figure 5. Timings for mapping: TopHat (Bowtie1). In this 
figure, we show the timings on each file system for TopHat [9], 
which aligned the reads with Bowtie (v 1.1.1) [7].  
 
In figure 6, we can see that /pylon2 timings on regular memory 
nodes are more comparable to those of $LOCAL and $RAMDISK 
than the runs on the LM nodes.  
 

 
 Figure 6. Timings for mapping: Cufflinks (TopHat, Bowtie1). 
In this figure, we show the timings for the transcriptome 
assembler program Cufflinks (v.2.2.1) [1]. The performance of 
$LOCAL and $RAMDISK are comparable.  
 

In this last figure, there is also noticeable variation between the 
primary and recurrent tumor. From a benchmarking perspective, 
the /pylon2 file system was comparable to $LOCAL and 
$RAMDISK on regular memory nodes. This might be an 
indication that the timings seen on /pylon2 are load-dependent. 

4 CONCLUSIONS 
Bioinformatics workflows consist of a series of connected 
programs that read in and write out data files of varying 
characteristics. They must frequently be re-engineered to perform 
optimally on HPC architectures that contain multiple node-types 
and file systems. Understanding the input and output 
characteristics of the workflow’s individual programs is a vital 
step to optimize the performance. Within such workflows, the 
straightforward choices would be to avoid copying files and 
carefully weigh the cost of keeping intermediate data files for 
potential future reanalysis versus re-generating the data files when 
needed. On a unique four-file-system arrangement such as on 
Bridges, the decisions become more complex as each of the file 
systems vary in terms of persistence, size and service charges.  
 
For the test cases outlined in this paper, the volatile file systems 
$LOCAL and $RAMDISK both performed comparably. 
However, at the current time on Bridges, $RAMDISK has usage 
charges associated with it whereas $LOCAL does not. Our 
recommendation for similar genomic workflows is to prefer 
$LOCAL over $RAMDISK exclusively for these service charge 
reasons.  
 
We also found that within the test workflows, the persistent 
storage system /pylon1 performed similarly to both $LOCAL and 
$RAMDISK. We recommend that the best use of this file system 
on similar workflows would be for staging results and as 
intermediate storage for output files. We note here that /pylon1 
has been recently replaced on Bridges with /pylon5, which is 
similar in architecture and performance to /pylon1.  Our 
recommendations for the best use of /pylon5 follow those of 
/pylon1.  

Overall within our tests the /pylon2 file system had the most 
variability and worst performance. We believe that this is due to a 
combination of /pylon2 system-wide I/O load and due to the non-
native OmniPath mounting of Slash2 on the Phase 1 Bridges 
system. Our recommendation for using the file system on a 
similar workflow would be to use /pylon2 for long-term storage 
and archiving needs. 
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